

This session - Measures of frequency - Prevalence - Incidence - Measures of effect - Risk and rates - Risk and rate differences/ Risk and Rate ratios - Odds and odds ratios - Inferential Statistics - 95\% Confidence intervals - Continuous variables - T Test - ANOVA - Categorical variables - Chi-squared

Prevalence

- Factors affecting prevalence
- Disease severity
- \uparrow deaths $-\downarrow$ prevalence
- Duration of use
- shorter duration - \downarrow prevalence
- Number of new cases
- many cases - \uparrow prevalence
- measures of prevalence useful for assessing the need for health care and the planning of health services.

Example:

In the Danish national prescription database, the 1 -year prevalence of PPI use was 9.1% in 2012.
This implies that of 1000 people alive and resident in Denmark in January 2012, 91 would redeem a prescription during 2012

```
(Drug Utilization: Methods and Applications, 2016)
```


- Drug and usage dependent:
- a high period prevalence might represent a:
- high rate of new users (e.g. for antibiotics),
- high number of persistent users (e.g. for insulin)
- high number of new and existing users (e.g. for nonsteroidal antiinflammatory drugs, NSAIDs).

- Need to be aware of what you are measuring Medication dispensings or users
one user may have many dispensings
- Need to select an appropriate usage period

- Number of $N E W$ users in a given time period
- Determines how often a medication is commenced Incidence= Number of new users

Number of people in population at risk
e.g. 22 new opioid users in village A

100 inhabitants in village A

$$
=0.22
$$

Incidence of opioid use in village A is 22%
This doesn't tell us how many total users there are

Incidence in DUR

- Need to consider a run-in period
- New user if different to a previous user
- Run in period varies with the medication and the health care setting
- Is the medication used intermittently or regularly?
- How often are medications prescribed or supplied?

Categorical data

- Interested in the relationship between an exposure and an outcome

Example: Is use of medication X more common among women compared to men

Exposure:?
Outcome:?

Measures of associatior Categorical data

- Interested in the relationship between an exposure and an outcome

Example: Is use of medication X more common among women compared to men

Exposure: Female gender
Outcome: Use of medication X

Comparing risk

- The chance of winning the lottery ticket is 1 in 20 million with a single ticket
- "If I buy two lottery tickets I will double my chances of winning, increasing my chances by 100\%."
- "If I buy two lottery tickets, my chance of winning is 2 in 20 million, so an absolute increase in my chances of winning is 0.0001% "

- Both are correct

- Different risk measures present the same information in different ways

		Use of Medication X		
		Yes	No	Row total
Gender	Female	40	50	90
	Male	60	50	110
	Column total	100	100	200

Risk difference: risk for females-risk for males

$$
\begin{aligned}
& =0.4-0.6 \\
& =0.2
\end{aligned}
$$

- There were 20 less users per 100 population for females than males

- Sometimes called risk reduction
- Risk difference measure quantifies the difference in incidence between an exposed and an unexposed population.
- We use a difference measure to estimate the risk that is attributable to exposure in the exposed group.

Risk difference

- Compares between two different therapies or strategies
- Comparison of pharmacist-led medication review versus no medication review

$\%$ medication related problems identified at dispensing	
Medication review	No medication review
8.2	1.5

- Absolute risk reduction= 8.2-1.5
= 6.7%

A ratio measure estimates the strength of association between a suspected risk factor and an outcome.

In our previous example
Risk ratio: risk for females/risk for males

$$
=0.67 \text { (ie 67\%) }
$$

That is females have a 33% lower risk of using medication X compared to males

Interpreting Risk ratios

- association:
- RR of 1 indicates no association
- $R R>1$ indicates a positive association
- $R R<1$ indicates a negative association
- Note: the prevalence ratio is the ratio of prevalence in A compared to prevalence in B but not used often

- Relative risk reduction (RRR)
- Reduction in event rates expressed in a proportional manner in relation to the control event rate
- Relative risk reduction = 1-relative risk
- Medication X RR $=0.67$ (females compared to males)

$$
\begin{aligned}
R R R & =1-R R \\
& =1-0.67
\end{aligned}
$$

$=0.33$
Being female reduces the risk of using medication X by 33\%"

- Lower the event rate in the control group the larger the difference between relative risk reduction and absolute risk reduction.

Rate measures

- Used when there is movement into or out of a cohort
- ie cohort members contribute different lengths of time to the study
- Used in the same way as risk measures

Example of a Rate Ratio
To identify the population most likely to benefit from an intervention to reduce antibiotic use, a study was conducted to see if antibiotic use in children was associated with gender.

The incidence rate of children using antibiotics who were female who did was measured over one year and compared with the incidence rate in male children in the same community who were using antibiotics
Since the children could have antibiotics more than one time in the study period, the researchers used the incidence rate of antibiotics, as this takes into account the number of times a child used an antibiotic.
The measured incidence rates of antibiotic use (per 100 person-years) were:
For male children= 3 For male children= 3
For female children $=0.6$
Therefore:
Rate Ratio $=5$
So in this study, the incidence rate of antibiotic use was five times higher in male children compared to female children.

Odds in DUR - Difficult to interpret - What does an odds of 0.15 mean?

Odds Ratio

a measure of association used for case-control studies
way of comparing whether the probability of a certain event is the same for two groups
estimates the relative risk
Odds Ratio $(O R)=\frac{a / c}{b / d}$

$$
=\frac{a x d}{b x c}
$$

■ - Cross sectional study looking at association between salbutamol use and hayfever in 11 year old children

		Hayfever		
		Yes	No	
Total				
Salbutamol user	Yes	141	420	

$$
\text { - Odds ratio } \begin{aligned}
& (\mathrm{a} \times \mathrm{d}) /(\mathrm{b} \times \mathrm{c}) \\
& =(141 \times 13525) /(928 \times 420) \\
& =4.89
\end{aligned}
$$

Odds ratios interpretation

- In case control studies the OR is the odds of
having the exposure among those with the
outcome
- If our salbutamol/ hayfever example was a
case control study
- We would interret this as the odds of using
salbutamol is 5 times higher among children with
hayfever than those without.

- Descriptive Statistics
- Describe a set of data.
- Common descriptive statistics:
- Categorical data: proportions
- Continuous data: mean, standard deviation, median, interquartile range, range

- Uses methods of probability theory to draw conclusions about a population using data from a sample.
- Methods of estimation and hypothesis testing are the basis of inferential statistics.
- Choice of test depends on study design.

- 95% confidence interval
- Normal distribution 95\% of data lies within 2 standard deviations of the mean
- For a given 95\% confidence interval around an estimate (mean, mean difference, proportion, difference in proportions, risk ratio, odds ratio) we are 95% confident that the TRUE population value lies within the interval.

- T-test or Z-test
- Z test easier without statistical software
- Paired t-test
- ANOVA
- Assumptions:
- Outcome variable is normally distributed.
- How can we assess the distribution of the outcome variable?

- To determine if a difference in a continuous outcome could be due to chance.
- Example
- Mean number of drugs in 100 women=8.5 drugs
- Mean number of drugs in 130 men=7.2 drugs
- Does the number of drugs differ between men and women?

-What are your:
- Null Hypothesis:
- Alternate Hypothesis:
 the mean number of drugs between men and women.
- mean ${ }^{\text {women }} \neq$ mean $^{\text {men }}$

- Null Hypothesis: there is no difference in the mean number of drugs between men and women.
- mean ${ }^{\text {women }}=$ mean $^{\text {men }}$
- Alternate Hypothesis: there is a difference in

$$
\begin{aligned}
t & =\frac{M_{x}-M_{y}}{\sqrt{\frac{S_{x}^{2}}{n_{x}}+\frac{S_{y}^{2}}{n_{y}}}}
\end{aligned} \begin{aligned}
& \begin{array}{l}
M=\text { mean } \\
n=\text { number of scores per group }
\end{array} \\
& S^{2}
\end{aligned}=\frac{\sum(x-M)^{2}}{n-1} \quad \begin{aligned}
& x=\text { individual scores } \\
& M=\text { mean } \\
& n=\text { number of scores in group }
\end{aligned}
$$

- Example: You want to know if women from clinic A are using more medicines than women from clinic B. You ask the next 8 women who visit each clinic how many medicines they are taking.

- Example: You want to know if women from clinic A are using more medicines than women from clinic B. You ask the next 8 women who visit each clinic how many medicines they are taking.

What is the null hypothesis:

What is the alternate hypothesis:

Example: You want to know if women from clinic
A are using more medicines than women from
clinic B. You ask the next 8 women who visit
each clinic how many medicines they are taking.
Null hypothesis: mean clinic A=mean clinic B
Alternate hypothesis: mean clinic A<>mean clinic B

Interpreting the t-statistic

- Use statistical tables to determine the
probability of achieving an estimate as large as
that obtained by chance
- In our example
$\mathrm{t}=0.847$
$\mathrm{df}=n_{1}+n_{2}-2$
$=14$

- The p value gives the probability of obtaining an estimate as large as the one obtained in your sample by chance.
- If p is low then the probability that you rejected the null hypothesis and found a difference is unlikely to be due to chance
- We conclude that there is very strong evidence to suggest that the difference in mean number of medications between men and women

- p is an estimate of the chance of finding the observed outcome and rejecting the null hypothesis when TRUE difference exists
- This called type 1 error or alpha
- Traditionally set at 0.05
\qquad
\qquad
\qquad

- Which of the following questions uses paired data?
- Is anticholinergic burden measured by the anticholingeric burden scale higher than that measure by the drug burden index among nursing home residents?
- Is the number of medications in men higher than in women?
- Are people living in Windhoek more likely to use opioids than people living in Sydney?

Paired t-test

- Which of the following questions uses paired data?
- Is anticholinergic burden measured by the anticholingeric burden scale higher than that measure by the drug burden index among nursing home residents?
- As for this question we are using two measurements from the one person. One for the anticholinergic burden scale and one for the drug burden index
Paired t-test
- Which of the following questions uses paired
data?
- Is anticholinergic burden measured by the
anticholingeric burden scale higher than that
measure by the drug burden index among nursing
home residents?
• As for this question we are using two measurements from
the one person. One for the anticholinergic burden scale
and one for the drug burden index

- Comparison of means among more than 2 groups (can use it for 2 groups but t or z test easier)
- ANOVA compares between-group variation and within-group variation. i.e the amount of variation in the data due to differences between the group means with the amount of variation in the data due to random differences between observations within groups.

- ANOVA assumptions
- The outcome variable is normally distributed.
- The true (population) standard deviations are assumed to be approximately equal between the groups being compared.

continuous outcomes
- Wilcoxon rank sum test
- Also known as Mann-Whitney U-test
- Rank all observations in ascending order

- Chose the one - group and sum the	Health clinics	Rank
- ranks	7.20	1
$\mathrm{T}=1+2+4+5+7+8+9+10$	7.70	2
+15	8.10	4
$\mathrm{T}=61$	8.14	5
	8.20	7
$N=16$	8.25	8
	8.27	9
Using the relevant	8.32	10
tables	9.00	15

Table A4 Critical values for the Wilcoxon matched pairs signed rank test$N=$ number of non-zero differences; $T=$ smaller of T_{+}and T_{-}S Significant if T < critical value.											
	One-sided P-value				One-sided P-value					$N=16$	
	0.05	0.025	0.01	0.005	N	0.05	0.025	0.01	0.005		
N	Two-sided P-value					Two-sided P-value					
	0.1	0.05	0.02	0.01		0.1	0.05	0.02	0.01		
5	1				30	152	137	120	109		
6	2	1			31	163	148	130	118		
7	4	2	0		32	175	159	141	128		
8	6	4	2	0	33	188	171	151	138		$\mathrm{T}=61$
9	8	6	3	2	34	201	183	162	149		
10	11	8	5	3	35	214	195	174	160		
11	14	11	7	5	36	228	208	186	171		
12	17	14	10	7	37	242	222	198	183		
13	21	17	13	10	38	256	235	211	195		
14	26	21	16	13	39	271	250	224	208		
15		25	20	16	40	287	264	238	221		
16	3	30	24	19	41	303	279	252	234		

able A4 Critical values for the Wilcoxon matched pairs signed rank test $=$ number of non-zero differences; $T=$ smaller of T_{+}and T_{-}; Significant if $T<$ critical value.										
I	One-sided P-value				One-sided P-value					
	0.05	0.025	0.01	0.005		0.05	0.025	0.01	0.005	
Two-sided P-value					Two-sided P-value					
N	0.1	0.05	0.02	0.01	N	0.1	0.05	0.02	0.01	
5	1				30	152	137	120	109	
6	2	1			31	163	148	130	118	$\mathrm{N}=16$
7	4	2	0		32	175	159	141	128	
8	6	4	2	0	33	188	171	151	138	$\mathrm{T}=61$
9	8	6	3	2	34	201	183	162	149	$\mathrm{P}>0.1$
10	11	8	5	3	35	214	195	174	160	
11	14	11	7	5	36	228	208	186	171	
12	17	14	10	7	37	242	222	198	183	
13	21	17	13	10	38	256	235	211	195	
14	26	21	16	13	39	271	250	224	208	
15		25	20	16	40	287	264	238	221	
16	36	30	24	19	41	303	279	252	234	

- If $\mathrm{N}=16, \mathrm{~T}=61$ then $\mathrm{p}>0.1$
- There is no evidence that we should reject the
null hypothesis that the mean number of
medicines are equal. Therefor there is no
evidence that the mean number of medicines
per health clinic is different to the mean number
of medicines per nursing home.

- Very easy to calculate by hand
- And even easier with software!
- To interpret the chi-squared use the chisquared distribution
- Degrees of freedom $d f=(r-1) \times(c-1)$

You conduct a study of 100 health clinic patients with depression to determine if women more likely to be prescribed an antidepressant than men.

		Antidepressant user		
		Yes	No	Row total
Gender	Male	18	7	25
	Female	42	33	75
	Column total	60	40	100

You conduct a study of 100 health clinic patients
with depression to determine if women more
likely to use antidepressants than men
-What is the null hypothesis?

- What is the alternate hypothesis?

	te the exp no associatic ber expec w total x	ed n val umn	for	
		Antid	user	
		Yes	No	Row total
	Female	15	10	25
Gender	Male	45	30	75
	Column total	60	40	100

- For each cell calculate observed -expected - Then calculate (observed-expected) ${ }^{2}$ - Then calculate (observed-expected) ${ }^{2} /$ observed - Then calculate the sum of (observed-expected) ${ }^{2 /}$ observed - This is the chi-squared value ie chi-squared=2.27 - How many degrees of freedom are there?				
Observed	Expected	Observed expected	(Observedexpected) ${ }^{2}$	(Observedexpected) 2 observed
18	15	3	9	0.50
7	10	-3	9	1.29
42	45	-3	9	0.21
33	30	3	9	0.27
			Sum=	2.27

What is the p-value for chi-squared=36 with 1 degree of freedom? Table A3 Percentage points of the χ^{2} distribution In the comparison of two proportions ($2 \times 2 \chi^{2}$ or Mantel-Haenszel χ^{2} test) or in the assessment of a trend, the percentage points give a two-sided test. A one-sided test may be obtained by halving the P values. (Concepts of one- and two-sidedness do not apply to larger degrees of freedom, as these relate to tests of multiple comparisons.)								
P value								
d.f.	0.5	0.25	0.1	0.05	0.025	0.01	0.005	0.001
1	0.45	1.32	2.71	3.84	5.02	6.63	7.88	10.83
2	1.39	2.77	4.61	5.99	7.38	9.21	10.60	13.82
3	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.13
9	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59

What is the p-value for chi-squared=36 with 1 degree of freedom? Table A3 Percentage points of the χ^{2} distribution In the comparison of two proportions ($2 \times 2 \chi^{2}$ or Mantel-Haenszel χ^{2} test) or in the assessment of a trend, the percentage points give a two-sided test. A one-sided test may be obtained by halving the P values. (Concepts of one- and two-sidedness do not apply to larger degrees of freedom, as these relate to tests of multiple comparisons.)								
P $P_{\text {value }}$								
d.f.	0.5	0.25	0.1	0.05	0.025	0.01	0.005	0.001
1	0.45	1.32	2.71	3.84	5.02	6.63	7.88	10.83
2	1.39	2.71	4.61	5.99	7.38	9.21	10.60	13.82
3	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.13
9	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59

- $\mathrm{OR}=2$ ($95 \% \mathrm{Cl}: 0.75$ to 5.41)

We are 95% confident that the true odds ratio lies between 0.75 and 5.41 , that is it could be as low as 0.75 or as high as 5.41 . Since this interval includes $\mathrm{OR}=1$ there is no evidence to conclude that the odds of women receiving an antidepressant than men.

