Statistical Test Selection in Epidemiologic Research

Vincent Lo Re, MD, MSCE, FISPE Department of Medicine (Infectious Diseases) Center for Pharmacoepidemiology Research and Training Perelman School of Medicine University of Pennsylvania

4th MURIA – June 18, 2018

"I was told there would be no math!"

- Chevy Chase 'Spies Like Us'

Learning Objectives

- Understand variable characteristics to guide statistical test selection
- Learn to use, interpret correlation coefficients
- Understand variables influencing sample size
- Gain familiarity with use, interpretation of linear and logistic regression

Outline

- Constructing a research project
- Correlation / regression
- Linear regression
- Logistic regression

Outline

- Constructing a research project
- Correlation / regression
- Linear regression
- Logistic regression

Constructing a Research Project

- Research question
- Variable characteristics
- Study design, sample size
- Statistical methods

Constructing a Research Project

• Research question

- Variable characteristics
- Study design, sample size
- Statistical methods

Research Question Type #1

• How much or common?

- Design: Cross-sectional, cohort studies

Descriptive statistics:

Potential

Analyses

- Percentages, frequencies
- Means (standard deviations)
- Medians (interquartile ranges)
- Prevalence (95% Cls)
- Incidence (95% CIs)

Research Question Type #2

- · Are these groups different?
 - Design: Case-control, cohort, RCTs
 - T-test: difference in means

Potential Analyses

- Wilcoxon rank-sum: difference in medians
- Chi square, Fisher's exact: diff. in frequencies
- ANOVA, Kruskal-Wallis: diff. in means,
- medians among ≥3 groups
- Odds ratios, hazard ratios, relative risks

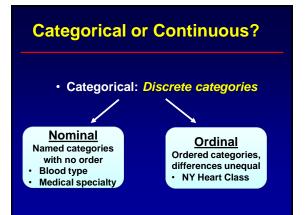
Research Question Type #3

- Can certain variables predict outcome?
 - Design: Cohort study
 - Linear regression
- Potential · Logistic regression
 - Survival analysis (Cox regression)

Constructing a Research Project

- Research question
- Variable characteristics
- Study design, sample size
- Statistical methods

Variable Characteristics to Consider


- Categorical or continuous?
 - Continuous: Normal or not?
- How many independent variables?
- · How many groups?

Variable Characteristics to Consider

- Categorical or continuous?
 Continuous: Normal or not?
- How many independent variables?
- How many groups?

Categorical or Continuous?

- Continuous: Any value within a range
 - Age (years)
 - Blood pressure (mm Hg)
 - Height (m)
 - Weight (kg)
 - CD4 cell count (cells/mm³)

Variable Characteristics to Consider

- Categorical or continuous?
 Continuous: Normal or not?
- · How many independent variables?
- How many groups?

Normal Distribution

- Continuous data
- Symmetrical, bell shaped
- Mean, median, mode all the same and located at the center
- Allows use of parametric tests (e.g., t-tests)
- If not, must use non-parametric tests

Variable Characteristics to Consider

- Categorical or continuous?
 - Continuous: Normal or not?
- How many independent variables?
- How many groups?

Depends on Clinical Question!

Constructing a Research Project

- Research question
- Variable characteristics
- Study design, sample size
- Statistical methods

Hypothesis Testing

- Develop hypothesis
- · Test hypothesis:
 - Collect data, observe effect
 H₀ = No effect or difference
 H_a = Effect or difference
- How likely is it that effect occurs by chance

 If very unlikely (p <0.05), reject H₀

Effect Size, Significance, Power,

- <u>Effect Size</u>: Magnitude of effect being studied
 Should represent clinically significant difference
- <u>Significance</u>: Probability of Type I error (α=0.05)
- <u>Power</u>: Probability of detecting difference (80%)
- <u>Sample Size</u>: n required to show a difference at set values of effect size, power, and significance

Determination of Sample Size

- Why is this necessary?
 - To detect effect size (OR, RR, HR) as significant
 - Avoid false-positive, false-negative conclusions
 Avoid enrolling too many patients
- When to determine sample size?
 During preparation of <u>all</u> protocols (perform early!)
- How to calculate?
 Stata
 - Other programs: PS Power / Sample Size, nQuery

Variables Used to Calculate Sample Size

- Detectable (clinically meaningful) difference (d*):
 Magnitude of difference in proportions, means
- r: ratio of unexposed:exposed, controls:cases
- Power (1 β):
 - Type II error (β) = prob. that there is no difference when one does exist (false-negative; set at 0.1, 0.2)
- Type I error (α):
 - Prob. of concluding that there is difference when one does not exist (false-positive; usually set at 0.05)

Variables Used to Calculate Sample Size

- p₁ (for proportions):
 - Proportion exposed who develop disease (cohort/ cross-sectional)
 - Proportion of cases exposed (case-control)
- p₀ (for proportions):
 - Proportion unexposed who develop disease (cohort/ cross-sectional)
 Proportion of controls exposed (case-control)
 - Hoportion of controls exposed (case-control)
- Standard deviation (σ) of continuous outcome

Calculation of Sample Size

- <u>Primary outcome</u> is variable for which you perform sample size calculation
 - If secondary outcomes important, ensure sample size is sufficient
- Typically, have more power to detect differences in continuous outcomes

Sample Size Calculation: Difference in Means

• Sample size for difference in means:

$$(Z_{\beta} + Z_{\alpha/2})^2 \sigma^2 (r + 1)$$

• Variables:

 σ = standard deviation of outcome (σ^2 =variance) $Z_{\alpha/2}$ = type I error of 0.05; value=1.96

- Z_β = type II error; for 0.2 [80% power], value=0.84
- $(Z_{\beta} + Z_{\alpha/2})^2 = 7.85$ for 80% power
- $(Z_{\beta} + Z_{\alpha/2})^2 = 10.5$ for 90% power
- r = ratio; d* = detectable difference

Sample Size Calculation: Difference in Proportions

Sample size for difference in proportions:

$$\frac{(Z_{\beta} + Z_{\alpha/2})^2 (p_w)(1 - (p_w))(r + (d^*)^2 r)}{(d^*)^2 r}$$

Note: p_w = weighted average of p₁ and p₀
 p_w = (p₁ + rp₀) / (1+r)

Variables Affecting Sample Size

- Detectable difference:

 Smaller difference (effect size): ↑ sample size

 Power:
- ↑ power (e.g., 80 → 90%): ↑ sample size
- Standard deviation of outcome (σ):
 Smaller σ: ↓ sample size
- P₀:
 Smaller p₀: ↑ sample size
- Significance level (α):
 - $-\uparrow \alpha \ \rightarrow \downarrow \text{ sample size}$

Sample Size Calculations

- You <u>must</u> increase sample size to reflect:
 - Loss to follow up
 - Expected response rate
 - Lack of adherence, etc.
- Example:

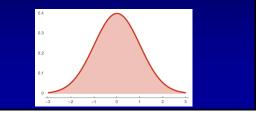
n

- Targeted number of exposed = 1,200 subjects
- But only 70% expected to consent (30% refusal rate)

↓ Effective sample size

- Adjust targeted number of exposed as follows:
 1,200 / 0.7 = 1,714 exposed
- So if 1:1 ratio, need 1,714*2 = 3,428 total subjects

Constructing a Research Project


- Research question
- Variable characteristics
- Study design, sample size
- Statistical methods

Select Appropriate Statistical Test for Continuous Data

Purpose of Test	Normal Theory Test (Parametric)	Corresponding Non-Parametric Test			
Compare paired data	Paired t-test	Wilcoxon signed-rank test			
Compare 2 independent samples	Two-sample t-test	Wilcoxon rank-sum test (Mann-Whitney U test)			
Compare ≥3 groups	One-way ANOVA	Kruskal-Wallis			

Parametric Tests

- Continuous data
- Normally distributed

Non-Parametric Tests

- Not normally distributed continuous data
 - Small samples
 - OR
 - Categorical data
 - Nominal, ordinal
 - Dichotomous (Outcome vs. no outcome)

Select Appropriate Statistical Test for Each Question

Purpose of Test	Normal Theory Test (Parametric)	Corresponding Non-Parametric Test			
Compare paired data	Paired t-test	Wilcoxon signed-rank test			
Compare 2 independent samples	Two-sample t-test	Wilcoxon rank-sum test (Mann-Whitney U test)			
Compare ≥3 groups	One-way ANOVA	Kruskal-Wallis			

Categorical Data Analysis: Chi Square Analysis

- Answers: "Are these groups different?"
- Contingency tables evaluate relation between values of ≥2 categorical variables
 - Rows, columns are independent

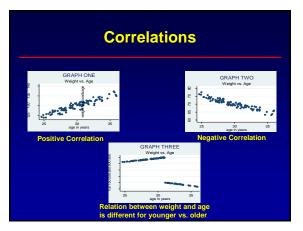
Categorical Data Analysis: Fisher's and McNemar's Tests

- Fisher's Exact Test: Use if any value in a cell of table is <5
- <u>McNemar's Test</u>: Use if data are from paired samples

Outline

- Constructing a research project
- *****Correlation / regression
- Linear regression
- Logistic regression

Correlation / Regression


- Examine relation between variables
- Correlation:
 Tests significance of relation
- Regression:
 - Quantifies relationship, controlling for confounders

Correlation Coefficient

- Quantifies relationship between two variables
 - Correlation coefficient ("r") ranges -1 to +1

Value of r	Interpretation				
r = 0	Two variables do not vary together at all				
0 > r > 1	Two variables increase or decrease together				
r = 1.0	Perfect correlation				
-1 > r > 0	One variable increases as the other decreases				
r = -1.0	Perfect negative or inverse correlation				

Often useful to graph data

Correlation Statistics

- Pearson's correlation (most widely used):
 - Assumes normally distributed data
 - Compute <u>pairwise</u> correlation ("r"), p values
- Spearman's rank-correlation coefficient:
 - One or more variables \rightarrow not normally distributed
 - Less sensitive to effects of outlier data
 - Compute correlation ("r"), p values

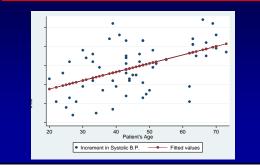
Outline

- Constructing a research project
- Correlation / regression
- Linear regression
- Logistic regression

Linear Regression

 Allows you to relate <u>continuous</u> outcome (y) to one or more predictor variables (x₁, ..., x_k)

- Mean value of y is expressed as linear combination of x's (x's may be <u>continuous</u> or <u>categorical</u>)
- Useful when have many potential confounders
- Have equation in the form:


 $y = \alpha + \beta^* x$

- Typically written as:
 - $E(y) = \beta_0 + \beta_1 x \rightarrow fitted values$

Linear Regression

- Perform ordinary least squares regression of dependent variable y on independent variable x
- Estimates minimize squared distance between observed data and fitted values from model

Linear Regression: Determine Best Fit Line in Data

For every 1 unit (cm) \uparrow in height, the pulmonary deadspace \uparrow by 1.03 mL.

regress dead	space height							
						Number of obs		15
								32.81
Model	5607.43156		5607	.43156				0.0001
	2221.50178		170.	884752		R-squared		0.7162
						Adj R-squared		0.6944
	7828.93333	14	559.	209524				13.072
deadspace	Coef.	Std.	Err.			[95% Conf.	In	
height	1.033323	.1803	872	5.73	0.000	.6436202	1	.423026
cons	-82.4852	26.30	147	-3.14	0.008	-139.3061	-2	5.66433

The constant is mean deadspace for a child without asthma. Mean deadspace for child without asthma = 83 mL Mean deadspace for child with asthma = 52.9 mL

regress dead	lspace asthma					
					Number of obs	
Model Residual	3388.05833 4440.875	1 13	3388.05833 341.605769		F(1, 13) Prob > F R-squared	9.92 0.0077 0.4328
Total	7828.93333	14	559.209524		Adj R-squared Root MSE	0.3891 18.483
deadspace	Coef.	Std. I	frr. t		[95% Conf.	terval]
asthma _cons	-30.125 83	9.5650		0.008	-50.79032 67.90819	.459683 8.09181

Multivariable Linear Regression

- Evaluate continuous outcome by linear relationship with independent variables
- Have >1 independent variable

Use of Multivariable Linear Regression

- Multiple factors may predict outcome
 - Blood pressure may be affected by weight, hormones, age, other factors
- Control for factors that can vary, but may confound, statistical analysis
 - E.g., age, sex, race, comorbidities
- Improve prediction

Outline

- Constructing a research project
- Correlation / regression
- Linear regression
- Logistic regression

Logistic Regression

Alternate form of regression

- -Use when outcome is binary
 - Death versus survive
 - Acute MI versus no acute MI
- -One or more predictor variables

Logistic Regression

- Regression method for <u>binary</u> outcomes
- Useful for:
 - Continuous or discrete covariates
 - Adjusting for potential confounders
 - Evaluation of effect modifiers
- Provides OR (95% CI) of outcome for those with vs. without exposure of interest

Logistic Regression

- Determination of odds ratios (ORs) is based on maximum likelihood methods
 - Find coefficient values that maximize likelihood of obtaining observed data
- Output requested: β coefficients or ORs

Logistic Regression

Issues to Consider with Logistic Regression

- Which variables to include
- Which fitting method to use
- Collinearity
- Effect modifiers:
 - Does alcohol use level alter relation between drugs and acute liver injury?

Final Important Consideratons

- Know your data before analysis!
 - Look for missing data, develop plan to address
 - Graph variables, relationships between variables
- Collaboration with biostatistician is useful