Outline of the session

* Introduction

« Simple linear regression analysis

Si ng le and multi P le linear + SPSS example of simple linear regression analysis

regression an aIyS|s

« Additional topics in multiple linear regression analysis
— Adjusted R-squared

Marike Cockeran - Standardised regression coefficients

2017 — Multicollinearity

— A note on categorical predictors (dummy variables)

NORTH-WEST UNIVERSITY >
YUNIBESITI YA BOKONE-BOPHIRIMA
NOORDWES-UNIVERSITEIT

POTCHEFSTROOM CAMPUS

It all starts here *

Introduction: Simple linear regression (1) Introduction: Simple linear regression (2)
« Suppose we collect data on two variables: «  We want to fit a straight line that describes the linear relationship
— Waist to hip ratio (X). between X and Y.

— Cholesterol (Y).

+ For each participant we now have a pair of observations (X;, Y;). °
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Waist to hip ratio (Independent variable)




Introduction: Simple linear regression (3)

Simple linear regression is a technique that is used to explore the
nature of the relationship between two variables.

Regression analysis enables us to investigate the change in one
variable, called the response (dependent variable), which
corresponds to a given change in the other, known as the
explanatory variable (independent variable).

The ultimate objective of regression analysis is to predict or estimate
the value of the response that is associated with a fixed value of the
explanatory variable.

Simple Linear Regression Equation (Prediction Line)

The simple linear regression equation provides an estimate of the
population regression line

Estimated

(or predicted) Estimate of Estimate of the
Y value for the regression  regression slope
observation i intercept

Value of X for
observation i

‘ Y = Bo + BuXi ‘

Interpretation of intercept term
B, is the estimated average values of Y when the value of X is zero.

B, has only practical application if X=0 is in the range of observed X
values.
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Intercept = /50{

Interpretation of slope term

« P, estimates the change in the average value of Y as a result of a
one-unit increase in X.
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One unit increase in X.




Coefficient of Determination (R?)

The coefficient of determination is the portion of the total variation in
the dependent variable that is explained by variation in the
independent variable

The coefficient of determination is also called R-squared and is
denoted as R?.

R SSR _ regression sum of squares
SST total sum of squares

Examples of approximate R? values (1)

X X

Perfect linear relationship between X and Y.

100% of the variation in Y is explained by variation in X.

Examples of approximate R? values (2)

Weak linear relationships between X and Y.
Some but not all of the variation in Y is explained by variation in
X.

Examples of Approximate R? values (3)

No linear relationship between X and Y.
The value of Y does not depend on X.
None of the variation in Y is explained by the variation in X.




Assumption of simple linear regression models

* Linearity
— The relationship between X and Y is linear.

» Independence of errors
— Error values are statistically independent.

+ Normality of error
— Error values are normally distributed for any given value of X.

» Equal variance (homoscedasticity)
— The probability distribution of the errors has constant variance.

Test assumptions after fitting the model by making use of the
residuals.

Residual analysis

The residual for observation i, e;, is the difference between the
observed and predicted values.

e =Y -Y

Check the assumptions of regression by examining the residuals.
— Linearity assumption
— Independence assumption
— Normal distribution assumption
— Constant variance for all levels of X (homoscedasticity).

Graphical analysis of residuals
— Plot the residuals against X.

Residual analysis for linearity
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Residual analysis for normality
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Residual analysis for equal variance

4 Constant variance

Ll Non-constant variance
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SPSS example: The data
Suppose we collect data on two variables:
— Waist to hip ratio (X).
— Cholesterol (Y).

For each participant we now have a pair of observations (X;, Y;).
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Steps in SPSS: Scatter plot and prediction line
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SPSS output: Scatter plot and prediction line
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Cholestarol (Dependent varisble)

Waistto hip ratio (independent variable)

Predicted cholesterol = 0.970 + 0.387 x Waist




Steps in SPSS: Simple linear regression model

Steps in SPSS: Statistics tab

Steps in SPSS: Save tab

SPSS output: Regression equation

‘ Y =fo+BX; ‘

O

‘ Predicted cholesterol = 171.233 + 0.970 X Waist




SPSS output: R? values SPSS output: Inferences about the slope

p—

Hp: =0 Hp: By #0

1.5% of the variance of cholesterol could be explained by waist to hip
ratio.

Waist to hip ratio is a significant predictor of the dependent variable
cholesterol, p=0.013.

SPSS output: Residual analysis for normality SPSS output: Residual analysis for equal variance

The residuals have constant variance.
The residuals are normally distributed.




SPSS output: Outliers

If the absolute standardised residual value is larger than 3 then the
observation is considered as an outlier.

Casewise Diagnosties”
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SPSS output: Influential cases

DFBETAS: |t is the difference
between the estimated
regression coefficient £, based
on al n cases and the
regression coefficient obtained
when the it" case is omitted.

If the absolute value of the
DFBETAS value exceeds —=
vn

the value can be viewed as an
influential value.

Introduction: Multiple linear regression analysis

In the preceding chapter, we saw how simple linear regression can
be used to explore the nature of the relationship between two
variables.

If knowing the value of a single explanatory variable improves our
ability to predict the response, we might expect that additional
explanatory variables could be used to our advantage.

To investigate the more complicated relationship among a number
of different variables, we use a natural extension of simple linear
regression analysis known as multiple linear regression analysis.

Introduction: Multiple linear regression analysis
Multiple linear regression equation:
¥ =By + BiXy + ByXo + - + ByX,

The regression coefficients are still estimated by using the method
of least squares.

The independent variables can be continuous or categorical
variables.

In the case of categorical variables we need to use dummy
variables.




Adjusted R-squared

+ The inclusion of an additional variable in a model can never cause
R? to decrease.

» To get around this problem, we can use a second measure, called
the adjusted R?, that compensated for the added complexity of a
model.

+ The adjusted R* increases when the inclusion of a variable
improves our ability to predict the response and decreases when it
does not.
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Standardised coefficients

Unstandardised coefficients

— The value of the unstandardised coefficient is dependent on the units of
measurement of the variables.

— ltis not possible to compare the relative magnitude of coefficients.

Standardised coefficients
— The value of the unstandardised coefficient now does not depend on the
units of measurement of the variables.
— Itis now possible to compare the relative magnitude of coefficients.
— How to standardise:
-7 Xx,-X
sd(Y)  sd(X)
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Multicollinearity

« Multicollinearity exists when there is a strong correlation between
two or more predictors (independent variables) in a regression
model.

« High levels of collinearity increase the probability that a good
predictor of the outcome variable will be found non-significant and
rejected from the model (Type Il error).

« VIF (variance inflation factor) > 10 indicates a potential problem.

* Tolerance below 0.2 indicates a potential problem.

SPSS output: Multicollinearity
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