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• Simple linear regression analysis

• SPSS example of simple linear regression analysis

• Additional topics in multiple linear regression analysis
– Adjusted R-squared
– Standardised regression coefficients
– Multicollinearity
– A note on categorical predictors (dummy variables)



Introduction: Simple linear regression (1)

• Suppose we collect data on two variables: 
– Waist to hip ratio (X).
– Cholesterol (Y).

• For each participant we now have a pair of observations ( ௜ܺ , ௜ܻሻ.

ID Cholesterol
(Y)

Ratio
(X)

1 203 3.60
2 165 6.90
3 228 6.20
4 78 6.50
5 249 8.90
⋮ ⋮ ⋮

Introduction: Simple linear regression (2)

• We  want to fit a straight line that describes the linear relationship 
between X and Y.



Introduction: Simple linear regression (3)

• Simple linear regression is a technique that is used to explore the
nature of the relationship between two variables.

• Regression analysis enables us to investigate the change in one
variable, called the response (dependent variable), which
corresponds to a given change in the other, known as the
explanatory variable (independent variable).

• The ultimate objective of regression analysis is to predict or estimate
the value of the response that is associated with a fixed value of the
explanatory variable.

Simple Linear Regression Model (1)
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Simple Linear Regression Model (2)
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Simple Linear Regression Equation (Prediction Line)

• 	෡ܻ௜ ൌ መ଴ߚ ൅ መଵߚ ௜ܺ

Estimate of 
the regression 
intercept

Estimate of the 
regression slope

Estimated  
(or predicted) 
Y value for 
observation i

Value of X for 
observation i

The simple linear regression equation provides an estimate of the 
population regression line

	෡ܻ௜ ൌ መ଴ߚ ൅ መଵߚ ௜ܺ



Method of least squares
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Interpretation of intercept term

• መ଴ߚ is the estimated average values of Y when the value of X is zero.

• መ଴ߚ has only practical application if X=0 is in the range of observed X 
values.
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Interpretation of slope term

• መଵߚ estimates the change in the average value of Y as a result of a 
one-unit increase in X. 

X

መଵߚ

One unit increase in X.

Coefficient of Determination (ࡾଶ)

• The coefficient of determination is the portion of the total variation in
the dependent variable that is explained by variation in the
independent variable

• The coefficient of determination is also called R-squared and is
denoted as .૛ࡾ
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Coefficient of Determination (ࡾଶ)
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Examples of approximate ࡾଶ values (1)

Y

X
૛= 1ࡾ

Y

X

Perfect linear relationship between X and Y.
100% of the variation in Y is explained by variation in X.

૛= 1ࡾ



Examples of approximate ࡾଶ values (2)

Y

X

૙ ൏ ૛ࡾ	 ൏ ૚

Y

X

Weak linear relationships between X and Y.
Some but not all of the variation in Y is explained by variation in 

X.

Examples of Approximate ࡾଶ values (3)

Y

X
૛= 0ࡾ

No linear relationship between X and Y.
The value of Y does not depend on X.

None of the variation in Y is explained by the variation in X.



Assumption of simple linear regression models

• Linearity
– The relationship between X and Y is linear.

• Independence of errors
– Error values are statistically independent.

• Normality of error
– Error values are normally distributed for any given value of X.

• Equal variance (homoscedasticity)
– The probability distribution of the errors has constant variance.

Test assumptions after fitting the model by making use of the 
residuals.

Residual analysis

• The residual for observation i, ݁௜, is the difference between the 
observed and predicted values.

• Check the assumptions of regression by examining the residuals.
– Linearity assumption
– Independence assumption
– Normal distribution assumption
– Constant variance for all levels of X (homoscedasticity).

• Graphical analysis of residuals
– Plot the residuals against X.

݁௜ ൌ ௜ܻ െ ෠ܻ௜



Residual analysis for linearity
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Residual analysis for normality
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Residual analysis for equal variance 
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SPSS example: The data

• Suppose we collect data on two variables: 
– Waist to hip ratio (X).
– Cholesterol (Y).

• For each participant we now have a pair of observations ( ௜ܺ , ௜ܻሻ.

ID Cholesterol
(Y)

Ratio
(X)

1 203 3.60
2 165 6.90
3 228 6.20
4 78 6.50
5 249 8.90
⋮ ⋮ ⋮



Steps in SPSS: Scatter plot and prediction line

Graphs
Legacy 
dialogs

Scatter/Dot

SPSS output: Scatter plot and prediction line

Predicted cholesterol	ൌ 0.970 ൅ 0.387 ൈܹܽ݅ݐݏ

	෡ܻ௜ ൌ መ଴ߚ ൅ መଵߚ ௜ܺ



Steps in SPSS: Simple linear regression model

Analyze Regression Linear

Steps in SPSS: Statistics tab



Steps in SPSS: Save tab

SPSS output: Regression equation

	෡ܻ௜ ൌ መ଴ߚ ൅ መଵߚ ௜ܺ

Predicted cholesterol	ൌ 171.233 ൅ 0.970 ൈܹܽ݅ݐݏ



SPSS output: ࡾଶ values

1.5% of the variance of cholesterol could be explained by waist to hip 
ratio.

SPSS output: Inferences about the slope

ଵߚ	:଴ܪ ൌ :஺ܪ									0 ଵߚ	 ് 0

Waist to hip ratio is a significant predictor of the dependent variable 
cholesterol, p=0.013.



SPSS output: Residual analysis for normality

The residuals are normally distributed.

SPSS output: Residual analysis for equal variance

The residuals have constant variance.



SPSS output: Outliers

• If the absolute standardised residual value is larger than 3 then the
observation is considered as an outlier.

SPSS output: Influential cases

 :ܵܣܶܧܤܨܦ It is the difference
between the estimated
regression coefficient መ௞ߚ based
on all ݊ cases and the
regression coefficient obtained
when the ݅௧௛ case is omitted.

 If the absolute value of the
ܵܣܶܧܤܨܦ value exceeds ଶ

௡

the value can be viewed as an
influential value.

Analyze Regression Linear Save tab



Introduction: Multiple linear regression analysis

• In the preceding chapter, we saw how simple linear regression can
be used to explore the nature of the relationship between two
variables.

• If knowing the value of a single explanatory variable improves our
ability to predict the response, we might expect that additional
explanatory variables could be used to our advantage.

• To investigate the more complicated relationship among a number
of different variables, we use a natural extension of simple linear
regression analysis known as multiple linear regression analysis.

Introduction: Multiple linear regression analysis

• Multiple linear regression equation:

෠ܻ ൌ ෠଴ܤ ൅ ෠ଵܤ ଵܺ ൅ ෠ଶܺଶܤ ൅ ⋯൅ ෠௣ܺ௣ܤ

• The regression coefficients are still estimated by using the method
of least squares.

• The independent variables can be continuous or categorical
variables.

• In the case of categorical variables we need to use dummy
variables.



Adjusted R-squared 

• The inclusion of an additional variable in a model can never cause
ܴଶ to decrease.

• To get around this problem, we can use a second measure, called
the ,ଶܴ	݀݁ݐݏݑ݆݀ܽ that compensated for the added complexity of a
model.

• The ଶܴ	݀݁ݐݏݑ݆݀ܽ increases when the inclusion of a variable
improves our ability to predict the response and decreases when it
does not.

Standardised coefficients

• Unstandardised coefficients
– The value of the unstandardised coefficient is dependent on the units of

measurement of the variables.
– It is not possible to compare the relative magnitude of coefficients.

• Standardised coefficients
– The value of the unstandardised coefficient now does not depend on the

units of measurement of the variables.
– It is now possible to compare the relative magnitude of coefficients.
– How to standardise:

௜ܻ െ തܻ

ሺ݀ݏ ௜ܻሻ
						 ௜ܺ െ തܺ

ሺ݀ݏ ௜ܺሻ



Multicollinearity

• Multicollinearity exists when there is a strong correlation between
two or more predictors (independent variables) in a regression
model.

• High levels of collinearity increase the probability that a good
predictor of the outcome variable will be found non-significant and
rejected from the model (Type II error).

• VIF (variance inflation factor) > 10 indicates a potential problem.

• Tolerance below 0.2 indicates a potential problem.

SPSS output: Multicollinearity

Analyze Regression Linear Statistics


