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• Simple linear regression analysis

• SPSS example of simple linear regression analysis

• Additional topics in multiple linear regression analysis
– Adjusted R-squared
– Standardised regression coefficients
– Multicollinearity
– A note on categorical predictors (dummy variables)



Introduction: Simple linear regression (1)

• Suppose we collect data on two variables: 
– Waist to hip ratio (X).
– Cholesterol (Y).

• For each participant we now have a pair of observations ( , .

ID Cholesterol
(Y)

Ratio
(X)

1 203 3.60
2 165 6.90
3 228 6.20
4 78 6.50
5 249 8.90
⋮ ⋮ ⋮

Introduction: Simple linear regression (2)

• We  want to fit a straight line that describes the linear relationship 
between X and Y.



Introduction: Simple linear regression (3)

• Simple linear regression is a technique that is used to explore the
nature of the relationship between two variables.

• Regression analysis enables us to investigate the change in one
variable, called the response (dependent variable), which
corresponds to a given change in the other, known as the
explanatory variable (independent variable).

• The ultimate objective of regression analysis is to predict or estimate
the value of the response that is associated with a fixed value of the
explanatory variable.

Simple Linear Regression Model (1)
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Simple Linear Regression Model (2)
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Simple Linear Regression Equation (Prediction Line)

• 	
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the regression 
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The simple linear regression equation provides an estimate of the 
population regression line

	



Method of least squares
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Interpretation of intercept term

• is the estimated average values of Y when the value of X is zero.

• has only practical application if X=0 is in the range of observed X 
values.
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Interpretation of slope term

• estimates the change in the average value of Y as a result of a 
one-unit increase in X. 

X
One unit increase in X.

Coefficient of Determination ( )

• The coefficient of determination is the portion of the total variation in
the dependent variable that is explained by variation in the
independent variable

• The coefficient of determination is also called R-squared and is
denoted as .
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Coefficient of Determination ( )
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Examples of approximate values (1)

Y

X
= 1

Y

X

Perfect linear relationship between X and Y.
100% of the variation in Y is explained by variation in X.

= 1



Examples of approximate values (2)

Y

X

	

Y

X

Weak linear relationships between X and Y.
Some but not all of the variation in Y is explained by variation in 

X.

Examples of Approximate values (3)

Y

X
= 0

No linear relationship between X and Y.
The value of Y does not depend on X.

None of the variation in Y is explained by the variation in X.



Assumption of simple linear regression models

• Linearity
– The relationship between X and Y is linear.

• Independence of errors
– Error values are statistically independent.

• Normality of error
– Error values are normally distributed for any given value of X.

• Equal variance (homoscedasticity)
– The probability distribution of the errors has constant variance.

Test assumptions after fitting the model by making use of the 
residuals.

Residual analysis

• The residual for observation i, , is the difference between the 
observed and predicted values.

• Check the assumptions of regression by examining the residuals.
– Linearity assumption
– Independence assumption
– Normal distribution assumption
– Constant variance for all levels of X (homoscedasticity).

• Graphical analysis of residuals
– Plot the residuals against X.



Residual analysis for linearity
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Residual analysis for normality
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Residual analysis for equal variance 
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SPSS example: The data

• Suppose we collect data on two variables: 
– Waist to hip ratio (X).
– Cholesterol (Y).

• For each participant we now have a pair of observations ( , .

ID Cholesterol
(Y)

Ratio
(X)

1 203 3.60
2 165 6.90
3 228 6.20
4 78 6.50
5 249 8.90
⋮ ⋮ ⋮



Steps in SPSS: Scatter plot and prediction line

Graphs
Legacy 
dialogs

Scatter/Dot

SPSS output: Scatter plot and prediction line

Predicted cholesterol	 0.970 0.387

	



Steps in SPSS: Simple linear regression model

Analyze Regression Linear

Steps in SPSS: Statistics tab



Steps in SPSS: Save tab

SPSS output: Regression equation

	

Predicted cholesterol	 171.233 0.970



SPSS output: values

1.5% of the variance of cholesterol could be explained by waist to hip 
ratio.

SPSS output: Inferences about the slope

: 	 0									 : 	 0

Waist to hip ratio is a significant predictor of the dependent variable 
cholesterol, p=0.013.



SPSS output: Residual analysis for normality

The residuals are normally distributed.

SPSS output: Residual analysis for equal variance

The residuals have constant variance.



SPSS output: Outliers

• If the absolute standardised residual value is larger than 3 then the
observation is considered as an outlier.

SPSS output: Influential cases

 : It is the difference
between the estimated
regression coefficient based
on all cases and the
regression coefficient obtained
when the case is omitted.

 If the absolute value of the
value exceeds

the value can be viewed as an
influential value.

Analyze Regression Linear Save tab



Introduction: Multiple linear regression analysis

• In the preceding chapter, we saw how simple linear regression can
be used to explore the nature of the relationship between two
variables.

• If knowing the value of a single explanatory variable improves our
ability to predict the response, we might expect that additional
explanatory variables could be used to our advantage.

• To investigate the more complicated relationship among a number
of different variables, we use a natural extension of simple linear
regression analysis known as multiple linear regression analysis.

Introduction: Multiple linear regression analysis

• Multiple linear regression equation:

⋯

• The regression coefficients are still estimated by using the method
of least squares.

• The independent variables can be continuous or categorical
variables.

• In the case of categorical variables we need to use dummy
variables.



Adjusted R-squared 

• The inclusion of an additional variable in a model can never cause
to decrease.

• To get around this problem, we can use a second measure, called
the 	 , that compensated for the added complexity of a
model.

• The 	 increases when the inclusion of a variable
improves our ability to predict the response and decreases when it
does not.

Standardised coefficients

• Unstandardised coefficients
– The value of the unstandardised coefficient is dependent on the units of

measurement of the variables.
– It is not possible to compare the relative magnitude of coefficients.

• Standardised coefficients
– The value of the unstandardised coefficient now does not depend on the

units of measurement of the variables.
– It is now possible to compare the relative magnitude of coefficients.
– How to standardise:

						



Multicollinearity

• Multicollinearity exists when there is a strong correlation between
two or more predictors (independent variables) in a regression
model.

• High levels of collinearity increase the probability that a good
predictor of the outcome variable will be found non-significant and
rejected from the model (Type II error).

• VIF (variance inflation factor) > 10 indicates a potential problem.

• Tolerance below 0.2 indicates a potential problem.

SPSS output: Multicollinearity

Analyze Regression Linear Statistics


