

SPSS example: The data									
 Suppose we co Waist to hip r Cholesterol (illect data on atio (X). Y).	two variable	s:	ations (Y. Y.)					
• For each partic	ipant we nov			$(X_i, I_i).$					
	ID	(Y)	(X)						
	1	203	3.60						
	2	165	6.90						
	3	228	6.20						
	4	78	6.50						
	5	249	8.90						
	:	:	:						

Linear Regression: Save	L
Predicted Values Unstandardized Standardized Adjusted S.E. of mean gredictions	Residuals Vigstandardized Standardized Studentized Dejeted Studentized deleted
Distances Maḫalanobis Coog's Prediction Intervals Mean [Individual Qonfidence Interval: 95 %	Influence Statistics I DfBeta(s) Standardized DfBeta(s) DfFit Standardized DfFit Cogariance ratio
Coefficient statistics Create ogefficient statistics Create a new dataset Dataset name: Write a new data file File Export model information to XML	lle
Export model information to XML t	Browse

Introduction: Multiple linear regression analysis

• Multiple linear regression equation:

$$\hat{Y} = \hat{B}_0 + \hat{B}_1 X_1 + \hat{B}_2 X_2 + \dots + \hat{B}_p X_p$$

- The regression coefficients are still estimated by using the method of least squares.
- The independent variables can be continuous or categorical variables.
- In the case of categorical variables we need to use dummy variables.

		S	tanda	ardis	ed o	coe	fficie	nts		
• U -	nstand - The v meas - It is n	ardised value of urement ot possi	I coeffic the unst t of the v ble to co	c ients andardis variables ompare t	sed co s. the rel	oefficie ative	ent is der magnituc	pendent le of coe	on the	units of s.
• S - -	tandaro - The v units - It is n - How t	dised co value of t of meas ow poss to stand	Defficien the unsta urement sible to c ardise:	nts andardis t of the v compare $\frac{Y_i - \overline{Y}}{cd(V)}$	sed co variabl the re $\frac{X_i}{sd}$	efficie es. elative $- \overline{X}$	ent now c magnitu	loes not de of co	depenc efficien	l on the ts.
			(Standardized	Su (Λ _i) a				
Madal		Unstandardized B	Coefficients Std. Error	Coefficients Beta	· .	Sig	95.0% Confiden	ice Interval for B Upper Bound	Collinearity Tolerance	Statistics
1	(Constant)	143.981	10.679		13.482	.000	122.986	164.976		
	ratio	11.908	1.172	.465	10.157	.000	9.603	14.212	.893	1.120
	age	.448	.119	.165	3.756	.000	.213	.682	.967	1.034
	and a last	080	050	- 055	1 210	227	- 159	038	011	

