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It all starts here *

Outline of the session
Introduction
Simple linear regression analysis
SPSS example of simple linear regression analysis

Additional topics in multiple linear regression analysis
— Adjusted R-squared
— Standardised regression coefficients
— Multicollinearity
— A note on categorical predictors (dummy variables)




Introduction: Simple linear regression (1)

» Suppose we collect data on two variables:
— Waist to hip ratio (X).
— Cholesterol (Y).

» For each participant we now have a pair of observations (X;, Y;).

() (X)

1 203 3.60
2 165 6.90
3 228 6.20
4 78 6.50
5

249 8.90

Introduction: Simple linear regression (2)

*  We want to fit a straight line that describes the linear relationship
between X and Y.
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Introduction: Simple linear regression (3)

Simple linear regression is a technique that is used to explore the
nature of the relationship between two variables.

Regression analysis enables us to investigate the change in one
variable, called the response (dependent variable), which
corresponds to a given change in the other, known as the
explanatory variable (independent variable).

The ultimate objective of regression analysis is to predict or estimate
the value of the response that is associated with a fixed value of the
explanatory variable.
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Simple Linear Regression Model (1)

Population model
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Simple Linear Regression Model (2)

Population model

Population :Igplélatlon Independent ~ Random
Y intercept co:fficient variable error
Dependent term
variable | Y S 3 X' 4
| BO B1 | |
Linear component Random error
component

Simple Linear Regression Equation (Prediction Line)

The simple linear regression equation provides an estimate of the

population regression line

Estimated
(or predicted) Estimate of Estimate of the
Y value for the regression  regression slope

observation i intercept
\ \' / Value of X for
observation i
Y; = Bo + B1X;




Method of least squares

Bo and B, are obtained by finding the values of that minimize the

sum of the squared differences between Y and ¥:

min )" (Y, -Y,)

Interpretation of intercept term
o B, is the estimated average values of Y when the value of X is zero.

[, has only practical application if X=0 is in the range of observed X
values.

Y

-
Intercept = Bo{




Interpretation of slope term

« f3, estimates the change in the average value of Y as a result of a
one-unit increase in X.
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One unit increase in X.

Coefficient of Determination (R?)

+ The coefficient of determination is the portion of the total variation in
the dependent variable that is explained by variation in the
independent variable

+ The coefficient of determination is also called R-squared and is
denoted as R?.

_ SSR _ regression sum of squares

R2

SST total sum of squares

0<R?*<1




Coefficient of Determination (R?)
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Examples of approximate R? values (1)
Y

Perfect linear relationship between X and Y.
100% of the variation in Y is explained by variation in X.




Examples of approximate R? values (2)

Weak linear relationships between X and Y.
Some but not all of the variation in Y is explained by variation in
X.

Examples of Approximate R? values (3)

Y
o o0
o '... [
X
R*=0

No linear relationship between X and Y.

The value of Y does not depend on X.
None of the variation in Y is explained by the variation in X.




Assumption of simple linear regression models

* Linearity
— The relationship between X and Y is linear.

Independence of errors
— Error values are statistically independent.

Normality of error
— Error values are normally distributed for any given value of X.

» Equal variance (homoscedasticity)
— The probability distribution of the errors has constant variance.

Test assumptions after fitting the model by making use of the
residuals.

Residual analysis

» The residual for observation i, e;, is the difference between the
observed and predicted values.

e=Y -V

» Check the assumptions of regression by examining the residuals.
— Linearity assumption
— Independence assumption
— Normal distribution assumption
— Constant variance for all levels of X (homoscedasticity).

» Graphical analysis of residuals
— Plot the residuals against X.




residuals

Residual analysis for linearity
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Residual analysis for normality
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residuals

Residual analysis for equal variance

Pl Non-constant variance ¥4 Constant variance

residuals

SPSS example: The data

Suppose we collect data on two variables:
— Waist to hip ratio (X).
— Cholesterol (Y).

For each participant we now have a pair of observations (X;, ;).

() (X)

1 203 3.60
2 165 6.90
3 228 6.20
4 78 6.50
5

249 8.90




Steps in SPSS: Scatter plot and prediction line
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SPSS output: Scatter plot and prediction line

50000~

=
8
g

i

300,00~

20000

Cholesterol (Dependent variable)

10000~

T T
500 1000

T
1500 2000

Waist to hip ratio (Independent variable)

Predicted cholesterol = 0.970 + 0.387 X Waist




Steps in SPSS: Simple linear regression model
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Steps in SPSS: Statistics tab
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Steps in SPSS: Save tab

¥ Linear Regression: Save
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SPSS output: Regression equation

Coefficients®

Standardized

Unstandardized Coeflicients

Coefficients

95.0% Confidence Interval for B

Model ﬂ-\ Std. Error t Sig Lower Bound  Upper Bound
1 (Constant) 171.233 14.858 11.524 .000 142,022 200.443
waist 970 .387 124 2.503 013 208 1.731

a. Dependanwariame:tﬁn

‘ Predicted cholesterol = 171.233 + 0.970 X Waist




SPSS output: R? values

Model Summarf'

Adjusted R Std. Error of
Model R R Square Square the Estimate
1 126 \_.015¢ 013 4418890

a. Predictors: (Constant), waist
b. DependentVariable: chol

1.5% of the variance of cholesterol could be explained by waist to hip

ratio.

SPSS output: Inferences about the slope

Coefficients®

Standardized
C 95.0% Confidence Interval for B

! C
Lower Bound Upper Bound

Model B Std. Error Beta t Sig.
1 (Constant) 171.233 14.858 11.524 .000 142,022 200443
waist 970 387 124 2.503 013 .208 1.731

a. Dependent Variable: chol

Ho:ﬁ1=0 HA:ﬁl;tO

Waist to hip ratio is a significant predictor of the dependent variable

cholesterol, p=0.013.




Frequency

SPSS output: Residual analysis for normality
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T T T T
4 2 2 4

Regression Standardized Residual

1.0m

0.8

0.6

0.4+

0.2

00

02 D!l 0]‘6
Observed Cum Prob

The residuals are normally distributed.

SPSS output: Residual analysis for equal variance
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The residuals have constant variance.




» If the absolute standardised residual value is larger than 3 then the

SPSS output: Outliers

observation is considered as an outlier.
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Introduction: Multiple linear regression analysis

In the preceding chapter, we saw how simple linear regression can
be used to explore the nature of the relationship between two
variables.

If knowing the value of a single explanatory variable improves our
ability to predict the response, we might expect that additional
explanatory variables could be used to our advantage.

To investigate the more complicated relationship among a number
of different variables, we use a natural extension of simple linear
regression analysis known as multiple linear regression analysis.

Introduction: Multiple linear regression analysis

Multiple linear regression equation:

Y =

o)

0 + lel + BzXz + + Bpo

The regression coefficients are still estimated by using the method
of least squares.

The independent variables can be continuous or categorical
variables.

In the case of categorical variables we need to use dummy
variables.




Adjusted R-squared

« The inclusion of an additional variable in a model can never cause
R? to decrease.

* To get around this problem, we can use a second measure, called
the adjusted R?, that compensated for the added complexity of a
model.

+ The adjusted R*> increases when the inclusion of a variable

improves our ability to predict the response and decreases when it
does not.

Model Summaryh

Change Statistics
Adjusted R Std. Error of R Square Sig. F Durhin-
Model R R Square Square the Estimate Change F Change dft df2 Change Watson

1 506* 256 251 38.30893 256 45.624 3 397 000 1.985

a. Predictors: (Constant), weight, age, ratio
b. Dependent Variable: chol

Standardised coefficients

« Unstandardised coefficients

— The value of the unstandardised coefficient is dependent on the units of
measurement of the variables.

— Itis not possible to compare the relative magnitude of coefficients.

» Standardised coefficients

— The value of the unstandardised coefficient now does not depend on the
units of measurement of the variables.

— Itis now possible to compare the relative magnitude of coefficients.
— How to standardise:

Y=Y X,—X

sd(Y)  sd(Xy)

Coefficients”

Unstandardized Coefficients 95.0% Confidence Intervalfor B Collingarity Statistics

Model B Std. Error t Sig LowerBound  UpperBound  Tolerance VIF

1 (Constant) 143981 10679 13.482 {000 122.986 164 976
ratio 11.908 1172 465 10157 000 9.603 14212 893 1120
age 448 119 65 3.756 000 213 682 967 1.034
weight -.060 050 -.055 -1.210 227 -159 038 911 1.098

a. Dependent Variable: chol




Multicollinearity

Multicollinearity exists when there is a strong correlation between
two or more predictors (independent variables) in a regression
model.

High levels of collinearity increase the probability that a good
predictor of the outcome variable will be found non-significant and
rejected from the model (Type Il error).

VIF (variance inflation factor) > 10 indicates a potential problem.

Tolerance below 0.2 indicates a potential problem.

SPSS output: Multicollinearity

#3 Linear Regression: Statistics XS

Regression Coefficien. ¥ Model fit

/| Estimates ¥ R gquared change
W Confidence intervals Descriptives
Level(%): |05 | Part and pariial correlations
Covariance matrix W/ Collinearity diagnostics’
Residuals

¥ Durbin-Watson
¥/ Casewise diagnostics

® Qutliers oulside: standard deviations

© Al cases
Coefficients”
Standardized
Unstandardized Coefficients  Coeflicients 95.0% Confidence Interval for B /7 Collinearity Statistics
Model B Std. Error Beta t Sig. Lower Bound  Upper Bound \Jolerance VIF
1 (Constant) 143,981 10679 13,482 000 122,986 164,976
ratio 11.908 1172 465 10.157 000 9.603 14212 893 1120
age A48 19 165 3756 000 213 6682 967 1.034
weight -.060 050 -.055 -1.210 227 -159 038 911 1.088

a. Dependent Variable: chol




